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Abstract - Event-oriented recognition and display 
software has been developed to assist human supervisors 
of automated control systems in maintaining situation 
awareness and getting started handling anomalies in 
those systems. The recognition software encapsulates 
data sets describing related events (i.e., a situation),for 
review by the human supervisor.  The display software 
supports quick overviews plus details on demand, as well 
as reminding the operator of definitions for the  events in 
the situation and the expected values of associated 
parameters. This work is part of a larger effort at 
Johnson Space Center to develop intelligent aids for use 
by crew and flight controllers during mission operations. 

Keywords: Information visualization, data visualization, 
situation awareness, intermittent monitoring. 

1 Introduction 
At Johnson Space Center (JSC), we are developing 

agent-based software to aid crew and flight controllers in 
interacting with automated control software during 
mission operations [9]. When automation is used to 
control complex systems, like advanced life support 
systems [1,8], it is important for the automation to 
support intermittent monitoring and situation awareness 
[12] by humans, who are ultimately responsible for the 
safe, reliable operation of those systems [14]. When the 
automation performs safely and reliably, human 
awareness of ongoing operations is reduced and human 
interaction with the underlying system becomes 
infrequent.  As a result, even highly trained human 
supervisors will become less familiar with the details of 
the complex, controlled system (e.g., typical performance 
levels, timing of expected mode transitions). Yet, those 
very details become critical when human supervisors 
must understand and respond to an anomaly. 

We have developed an approach for automatically 
detecting and reporting system performance in a way that 
supports routine system evaluation for situation 
awareness and anomaly handling. Central to this 
approach is the situation, an encapsulated collection of 

data structured according to human understanding of 
operational events.  A situation is organized around a 
hierarchy of these events involving both nominal and off-
nominal conditions or procedures, and it can be 
contrasted with individual, low-level data changes that 
are commonly found in data streams.  By organizing the 
data in this way, the top-level view of the situation 
consists of highly abstracted events derived from a 
human’s mental model of such situations.  This top-level 
view summarizes the transitions among events within the 
situation and indicates whether these transitions took 
place as expected.  The user will often need to look no 
further.  However, if needed, the details of the situation 
can be readily explored because they are hierarchically 
organized according to both the domain system-
subsystem relations and the event hierarchy inherent in 
the situation.  For instance, when tracing the event 
hierarchy, the user can see all the events that are expected 
within the situation and when they were actually 
observed.  Alternatively, the user can request summary 
performance parameters for each major sub-system (e.g., 
a bioreactor within a water recovery system).  If a sub-
system summary is not sufficient, the user can further 
request a full set of parameters for the sub-system of 
interest.  At every level, data plots are available showing 
the observed and expected values as well as the times of 
observed and expected events. 

In this paper we discuss our approach for event-
oriented data capture and display.  We describe our 
software architecture for situation detection, notification, 
and review.  We illustrate the use of our software with an 
example from an actual anomaly involving a crew water 
recovery system at JSC.  We relate our work on situation 
assessment to that of other researchers.  We close by 
summarizing our results and future work in this area. 

2 Architecture 
Our support for situation assessment consists of three 
main components: 
• Situation Detection:  software that recognizes when 

the events comprising a situation occur, 



• Notification of New Situations:  software that notifies 
users when a situation is recognized, and  

• Situation Inspection:  software that aids the user in 
reviewing and annotating a situation summary.   

In this section we describe these components and discuss 
how they work together to provide the user with an 
integrated situation assessment capability. 
 

The three components of situation assessment are 
implemented using the Distributed Collaboration and 
Interaction (DCI) environment[11] (Figure 1).  DCI is an 
agent-based system developed for use in manned space 
operations.  It’s purpose is to aid crew and flight 
controllers in performing their operational tasks.  It 
accomplishes this by providing each person with a liaison 
agent, called an Attentive Remote Interaction and 
Execution Liaison (ARIEL) agent.  Each ARIEL agent 
provides services for its user that are customized to the 
roles its user holds within the space operations 
organization.  These services are listed below: 
• Notification Service:  filters incoming notices based 

on a specification of what its user is interested in, and 
informs the user of the notices of interest based on 
the user’s state (e.g., roles, location) and the 
importance and urgency of the notice.   

• Task Status Service:  tracks completion of tasks on 
the user’s schedule and requests acknowledgement of 
tasks deemed critical to operations. 

• Location Service:  tracks the current location of it 
user; location is modeled as a physical location (e.g., 
in building 4) and a cyber location (online or offline). 

• Commanding and Authorization Service:  authorizes 
users to interact with vehicle and crew systems, and 
assists in reconfiguring these systems for interaction. 

• State Management Service:  manages updates to the 
model of user state maintained by the agent.  

• User Interface Service:  determines how to inform the 
user of new information (e.g., notices, schedule 
changes) and manages the resulting interface changes 

The DCI environment also includes augmenting software 
designed to interface legacy domain systems with the 
ARIEL agents.  The Event Detection Assistant (EDA) is 
an example of augmenting software within DCI that 
detects events in vehicle and crew systems of interest to 
the users within  DCI.  The EDA consists of recognition 
software to detect when events occur and communication 
software that imports data from vehicle and crew systems 
into the recognition software and exports events detected 
by the recognition software to the ARIEL agents.   
 

Situation Detection is accomplished using the Event 
Detection Assistant within DCI.  EDA is implemented 
using the Complex Event Recognition Architecture 
(CERA) [5].  CERA was developed in Lisp by I/Net, Inc., 
under a NASA grant.  A CERA application defines event 
recognizers that specify the environmental conditions that 

must hold for an event to be true (e.g., a loss of control 
communications event occurs when a safety message is 
observed).  CERA extends the concept of understanding 
as recognition [6,7] that comes from natural language 
processing by recognizing complex temporal relationships 
among events and by instantiating new events based on 
the recognition of patterns of constituent events.  
Composite, high-level events can be constructed from 
patterns of simple low-level events, resulting in a 
hierarchical event structure.  For our application, 
situations are high-level CERA events.  When executed, 
CERA monitors a telemetry data stream from the crew 
systems.  Signals within this data stream activate the 
CERA recognizers, resulting in the creation of event data 
structures that are exported to the ARIEL agents.  
 

 

Figure 1. DCI Architecture  

Notification of new situations is accomplished using the 
ARIEL agents within DCI.  Situations detected by CERA 
are processed by the Notification Service of each ARIEL 
agent to determine if they are of interest to the agent’s 
user and, if so, how the user should be notified [10].   The 
Notification Service includes an XML pattern-matcher 
implemented in Java.  This pattern matcher compares the 
contents of a recognized situation to a set of predefined 
XML patterns that specify which events are of interest to 
the user.  There is a unique set of predefined patterns 
(called notice specifications) for each role that a user can 
fulfill (e.g., flight surgeon).  Each notice specification 
defines the conditions to be matched as well as the 
directives to perform when the match holds.  The notice 
directive specifies how urgently and emphatically to 
inform the user of an event, as well as what interaction 
mechanism to use (e.g., computer display, pager).  If an 
incoming situation matches the conditions of a notice 
specification, it is annotated with the information below: 
• Latency:  the urgency of the notice (immediate, 

deferred, or archive) 
• Focus of attention:  the emphasis to be place on the 

notice (primary, secondary, or no-shift) 



• Modality:  the interaction mechanisms to be used 
when notifying the user 

These three annotations are used by the User Interface 
Service to notify a user of the event in the specified 
manner.  For example, a situation of immediate latency 
and primary focus of attention might result in a page with 
a 911 in the subject line. 
 

Situation Inspection is supported within DCI by 
providing the capability to launch a Situation Viewer 
from the ARIEL user interface for all situations of interest 
identified by the ARIEL agent.  The Situation Viewer is a 
Java process that displays the event information captured 
by EDA in a situation and overlays it with comments 
added by users reviewing the situation and knowledge 
about the expected timing of events and the expected 
value changes of parameters within these events.  The 
details of a situation can be inspected either from the 
perspective of the domain system-subsystem relations of 
systems affected by the situation or the event hierarchy 
inherent in the situation.  The remainder of this paper 
describes the Situation Viewer and illustrates its use for 
an example anomaly in the crew water recovery system. 

 

3 Example In Use 
Since the purpose of the situation viewer is to allow 

operators to gain insight into situations that have 
occurred, it is important to follow the use of the situation 
viewer through an operator’s investigation of a specific 
occurrence of a situation within a specific situation.  This 
enables the reader to see how the situation viewer exposes 
information under the operator’s control.  Later sections 
will present the software constructs that make this viewer 
reusable for new types of situations and in new 
application domains. 

Monitored System. Johnson Space Center is 
conducting a series of test for regenerative life support 
systems that can operate continuously for long periods of 
time in a largely autonomous fashion to support science 
crews in remote habitats.  The data shown in the scenario 
below is actual data from one of these tests.   

In the mission operations concept that these life 
support systems are intended to support, the crew is 
responsible for most of the day-to-day operations of 
science experiments and maintenance of the habitat.  
Most of these functions are highly automated to lighten 
crew workload.  Unfortunately, even the best automation 
requires occasional human attention to ensure that it is 
functioning properly.  The crew are expected to be 
familiar with the principles behind the life support 
hardware systems and the software systems which control 
them.  However, when humans are responsible for a large 
number of such systems that do not require much 

attention, they will inevitably forget some of the details of 
operation (variable names, detailed control policies). 

The example below is based on actual logged data 
from an experiment with an advanced Water Recovery 
System (WRS) at Johnson Space Center. The WRS 
consists of four sub-systems: a Packed Bed Biological 
Water Processing System (PBBWP) which removes 
nitrogen and carbon compounds from the water, a 
Reverse Osmosis (RO) system which filters our small 
particles, an Air Evaporation System (AES) which 
evaporates the brine waste product from the RO to 
remove salts, and a Post Polishing System (PPS) which 
performs a final polishing of the water to remove trace 
carbon compounds.  In addition, there was a software 
control system which controlled the four sub-systems of 
the WRS.  The software controls system consists of a 
skills layer, which performs low-level closed loop control 
operations and reports the low level data which is logged 
in an archive file. A second  layer in the controls system 
manages higher level operations (e.g., switching 
operating modes for a sub-system in response to changing 
conditions of the WRS).  This layer is called the Reactive 
Action Procedures (RAPs) layer.   

Situation Review Scenario. In this scenario, the 
RAPs layer loses communications with the skills layer 
(called a Loss of Raps Communication, or LORC).  When 
the skills layer detects the loss of communications, it 
responds by safing all four sub-systems and sending a 
safety message indicating that RAPs communications 
have been lost.  A human is called in to handle the 
anomaly.  This requires manually resetting the control 
software, which results in a restoration of RAPs 
communication and the restarting of all four sub-systems 
(called a Restoration of RAPs Communication or RORC). 

Figure 2 is the initial view of this situation.  From 
this view, the operator is able to see that a LORC-RORC 
Situation occurred, lasting from last in the night of May 
23, 2001 until the next morning.  If the operator has 
temporarily forgotten the acronym, the tool-tip text 
provides quick assistance, showing that it is the loss and 
subsequent recovery of RAPs communications.  This 
display also informs the operator that the LORC-RORC 
Situation consists of two sub-situations, occurring in 
sequence: a LORC Situation followed by a RORC 
Situation.  All four sub-systems (RO, AES, PBBWP, and 
PPS) completed safing operations shortly after receiving 
the safety message.  From general knowledge of the WRS 
controls software, the operator will know that regaining 
RAPs communications is a manual procedure that could 
not occur until people arrived at the WRS laboratory the 
next morning, which explains the delay in restarting the 
subsystems.  Finally, all four sub-systems restarted 
shortly after RAPs communications were restored.  



During this short review, the operator has been reminded 
of what the LORC-RORC Situation is and has seen 
generally how this instance of that situation played out. 

 

Figure 2. Situation Hierarchy 

 If the operator wishes to have a closer look at the 
details behind a portion of the event hierarchy, a click on 
a leaf-level node (e.g., RO Safed) will result in a view 
like that shown in Figure 3. 

 

Figure 3. Event Logic and Related Observations 

From this view, the operator can see the logic 
required for concluding that the RO sub-system has been 
safed.  This view tells the operator that if either of two 
complex conditions exist, the RO will be designated as 
safed.  It also indicates that on this occasion, the first of 
the two complex conditions was observed (indicated by 
the bold text and the timestamps next to the conditions). 

A summary of system functioning during the 
situation is available by selecting the “Summary Params” 

view.  By selection the “Small Plots” option, the view in 
Figure 4 will then be displayed. 

  

Figure 4. Small Plots of Summary Parameters 

For each parameter, the dashed gray line represents 
expected values over the course of the situation and the 
solid colored line represents observed values.  Generally, 
the colored lines follow the course outlined by their 
respective expected lines, although some seem to start 
drifting a little in the middle of the situation.  The 
operator notes that this may warrant further investigation.  
The bottom row of the small plots view marks where 
events within the situation occur.  As with the 
parameters, gray marks indicate where events are 
expected and colored marks indicates where events were 
observed.  There is an event at mid-situation which has 
no corresponding expected mark.  To see if this 
“unexpected” event is related to the drift of some 
parameters, the operator requests a table view of the 
summary events (Figure 5) by clicking on the lower line 
of the small plots table. 

 

Figure 5. Summary Events Table 

The event in this table with no expected time is the 
loss of skills communications.  From their general 
knowledge of the WRS controls system, operators will 
know that without the skills processes, no data are 
recorded.  As a consequence, the apparent drift in the 
parameters beginning at mid-situation may be the result 
of a plotting artifact (using a straight line to estimate the 
data between the two observed points).  To investigate 
this hypothesis, the operator requests a large plot, which 
shows observed points (see Figure 6 below). 

The large plot view in Figure 6 marks observed 
points by plotting a shape (+, X, triangle, square).  Where 
the parameters are drifting in mid-situation, there are no 
observed points, so the operator’s hypothesis is 
confirmed. If the operator needs to see exact data values 



for any of the parameters, a tabular view is available. At 
this point, the operator has become satisfied that 
everything is according to expectation.  The operator 
records as comments these conclusions about the mid-
situation drift of parameter values so that future reviewers 
of this situation will not be confused by them. 

 

Figure 6. Large Plot of Summary Parameters 

4 Information Sources 
The use of standard data structures in the 

information sources for the situation viewer make it 
adaptable to new classes of situations and to new domains 
beyond life support systems.  Some of the information 
sources are defined a priori, by a situation designer before 
data are collected from the monitored system.  Other 
information is collected at runtime, identifying parameter 
values and observed situation instances. 

Data Log. The first source of data used by the 
situation viewer is a log of system parameter values 
collected at runtime.  While this log is quite large, the 
information kept in the log is rather simple, identifying 
the parameter, the time of the observation, and the 
parameter value.  In the example above, the parameter 
values of each sub-system were logged every 5 minutes.   

Situation Instance. This is the report from the 
situation recognition software indicating what situations 
were recognized and the structure of those situations.  A 
situation instance includes which events were recognized, 
which conditions within the structure were observed, and 
the detection times for each event in the hierarchy.   

Situation Specification. The situation specification 
defines how to recognize situations.  It is class level 
information defined a priori.  It includes information 
about the hierarchy of events to be recognized within a 
situation, as well as key times and expected values for 
parameters that characterize these events.   

Parameter Specification.  The Parameter 
Specification is also made a priori, identifying the links 
between parameter identifiers used to retrieve data and 
more descriptive names for the parameters, units of 
measure, display format, and ideal plot ranges.  While 
not strictly required, this additional information makes it 
possible to provide more informative displays to operators 
who may have forgotten a few of the parameter details.   

5 Related Work 
The task supported by our situation recognition and 

display software is the review of meaningful events in a 
monitored system.  These can be events that occur during 
the course of normal operation or events that characterize 
an anomaly.  In both cases, the user must first understand 
the situation indicated by these events.  Endsley [4] has 
investigated the use of task-oriented software design to 
support such situation awareness.  According to Endsley, 
situation awareness can be thought of as an internalized 
mental model of the current state of the operator's 
environment.  The event recognizers used in our 
approach capture the user’s mental model of operational 
events and reflect this model in the event hierarchy 
represented in the situation view.  Endsley’s view of  
situation awareness includes the perception of the 
elements in the environment, the comprehension of their 
meaning and the projection of their status in the near 
future.  While the meaning of situation for Endsley is 
more encompassing than our integrated event-oriented 
data, the encapsulated event-oriented data structure 
presented by our situation viewer provides an important 
part of the information necessary for constructing such 
situation awareness. 

Christoffersen, Blike, and Woods [3] have 
investigated the human process of formulating event-
oriented perceptions from low-level data.  They indicate 
that the perception of events (or situations) as unified, 
organized collections of data occurring over time is 
analogous to the perception of objects in space.  This 
work has strong implications for the types of software 
that will support this human cognitive process. They 
analyzed anesthesiologists’ interpretations of emergency 
room data. They found that events are knowledge-driven 
(e.g., even the absence of change was informative when 
change was expected).  Our approach to automated 
situation capture and presentation is to assist the operator 
in applying knowledge-driven identification of events and 
the encapsulation of related data.  They also found  that 
events are data-driven (i.e., most events were indicated by 
sudden changes in properties of system data).  While we 
use automated event recognition based on pre-defined 
patterns of data changes, we also provide manual options 
to display any variable of interest.  This allows operators 
to discover relationships not defined a prior.  



Christoffersen also found that human-identified events 
are multi-level and nested, which is accommodated by the 
hierarchical definition of events in our software. 

A third area of related work is information 
visualization [2,13].  According to Card, Mackinlay, and 
Shneiderman, information visualization is the use of 
computer-supported, interactive visual representations of 
abstract data to amplify cognition.  They present a 
reference process model of knowledge crystallization that 
supports cognitive amplification through visualization.  
The reference model includes such processes as 
information foraging, searching for schema, instantiating 
schema with data, and packaging patterns found in 
output products.  Our approach to situation recognition 
and presentation assists these processes by supporting 
data exploration and by organizing data into meaningful 
collections for detailed examination and display to others. 

6 Conclusions 
We have developed situation display software that 

works in coordination with situation recognition software 
to support mission operations personnel in maintaining 
situational awareness.   We have tested this software 
using data recorded during a series of experiments with 
advanced life support systems at NASA/JSC.  This 
software identifies important events as they occur, 
encapsulates information describing those events, and 
presents it to assist human supervisors in understanding 
those events.   The software design uses data structures 
that allow it to be applied to other situation types and to 
new domains.  This effort is part of a larger effort to 
develop intelligent aids for crew and flight controllers. 

We intend to evaluate the recognition and display 
software with engineers responsible for supervising 
intelligent control systems.  We also will expand to new 
situation types and to new life support systems.  Based on 
what we learn, we will develop software for users to 
specify situation definitions. 
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